Q.	.P. Code: 18CE1013 R18	3		
	Reg. No.			
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR (AUTONOMOUS)				
M.Tech I year II Semester Supplementary Examinations Dec 2019 Time: 3 hours ADVANCED STEEL DESIGN Max. Marks:60 (Structural Engineering) (Answer all Five Units 5×12=60 Marks)				
1	a Explain plastic hinge.	3M		
	 b Determine shape factor for triangular section with base width 'b' and height 'h' c Determine shape factor for Hollow tube section with its external diameter 'D' and internal diameter 'd' 	5M 4M		
	OR			
2	Explain fully plastic moment and determine the fully plastic moment required for the frame shown in Figure, if all the members have the same value of Mp.	12M		

3 A hat of 100mm x 80mm x 5mm section with a 30 mm lip is to be used as 12M concentrically loaded column of effective length 4.0 mm. Determine the allowable load. Take fy =235 N/mm².

OR

4 Find the allowable axial load for a column section shown in Figure 1. Effective length 12M of the column is 3.6 m. Take fy =235 N/mm².

Q.P. Code: 18CE1013		0.9.
	UNIT III	_
5	 a Write about Tower configuration b Loads on Transmission Towers 	6M 6M
	OR	
6	Explain the procedure for design of self-supporting simple towers.	12M
7	a Compare the hollow circular & hollow square section as thin tubular sections, for its strength with respect to use as compression member	6M
	b Enlist the loads acting on the structure and write on live load calculation for roof truss	6M
	OR	
8	Design a purlin for a roof truss having the following data:	12M
	Spacing of truss = $3m c/c$,	
	Spacing of Purlin = $2m c/c$	
	Wind pressure = 2.5 kN/m , Roof coverage= AC	
	Sheeting weighing 700N/m	
	Live load on purlin=1.4 kN/m	
	UNIT V	
9	a Explain briefly about Structural Framing	5M
	b What are the sections that are normally used as purlins or Girts?	4M
	c State difference between a purlin and a girt.	3M
	OR	
10	Design a roof truss, rafter bracing, purlin for an industrial building located at Guwahati with a span of 20m and a length of 50m The roofing is galvanized iron	12M

sheeting Basic wind speed is 50m/s and the terrain in an open industrial area Building is class B with a clear height of 8m at the eaves ***END***